首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7050篇
  免费   977篇
  国内免费   982篇
化学   3246篇
晶体学   39篇
力学   238篇
综合类   29篇
数学   2953篇
物理学   2504篇
  2024年   4篇
  2023年   228篇
  2022年   180篇
  2021年   227篇
  2020年   326篇
  2019年   213篇
  2018年   245篇
  2017年   245篇
  2016年   289篇
  2015年   288篇
  2014年   468篇
  2013年   551篇
  2012年   623篇
  2011年   625篇
  2010年   583篇
  2009年   577篇
  2008年   553篇
  2007年   552篇
  2006年   455篇
  2005年   299篇
  2004年   201篇
  2003年   181篇
  2002年   154篇
  2001年   186篇
  2000年   115篇
  1999年   125篇
  1998年   99篇
  1997年   30篇
  1996年   39篇
  1995年   31篇
  1994年   33篇
  1993年   28篇
  1992年   41篇
  1991年   38篇
  1990年   36篇
  1989年   26篇
  1988年   27篇
  1987年   27篇
  1986年   14篇
  1985年   20篇
  1984年   9篇
  1983年   3篇
  1982年   4篇
  1981年   3篇
  1980年   4篇
  1959年   2篇
  1936年   2篇
排序方式: 共有9009条查询结果,搜索用时 15 毫秒
81.
82.
《中国化学快报》2023,34(4):107694
The first example of the microfluidic chips (MFCs) consisting of centimeter-level 3D channels with high-density and large-volume fabricated by femtosecond laser micromachining were utilized to develop a time-saving, economical and hazardless flow synthesis process, and its advantages have been proved by in situ formation of aryldiazonium salts and subsequent borylation with bis(pinacolato)diboron. There are several important advantages in our 3D MFC-based flow synthesis technology, including the following: (1) the reaction temperature was altered from ice bath to room temperature; (2) the residence time was reduced by 10 times; (3) the yield was greatly improved, that is, several arylboronates were successfully obtained with higher yield compared to traditional batch process. Therefore, it can be envisioned that a novel, simplified flow synthetic protocol will be developed toward green organic synthesis via MFCs.  相似文献   
83.
《中国化学快报》2023,34(6):107659
The electrochemical nitrogen reduction reaction (NRR) for the ammonia production under ambient conditions is regarded as a sustainable alternative to the industrial Haber–Bosch process. However, the electrocatalytic systems that efficiently catalyze nitrogen reduction remain elusive. In the work, the nitrogen reduction activity of the transition metal decorated bismuthene TM@Bis is fully investigated by means of density functional theory calculations. Our results demonstrate that W@Bis delivers the best efficiency, wherein the potential-determining step is located at the last protonation step of *NH2 + H+ + e → *NH3 via the distal mechanism with the limiting potential UL of 0.26 V. Furthermore, the dopants of Re and Os are also promising candidates for experimental synthesis due to its good selectivity, in despite of the slightly higher UL of NRR with the value of 0.55 V. However, the candidates of Ti, V, Nb and Mo delivered the relative lower UL of 0.35, 0.37, 0.41 and 0.43 V might be suffered from the side hydrogen evolution reaction. More interestingly, a volcano curve is established between UL and valence electrons of metal elements wherein W with 4 electrons in d band located at the summit. Such phenomenon originates from the underlying acceptance-back donation mechanism. Therefore, our work provides a fundament understanding for the material design for nitrogen reduction electrocatalysis.  相似文献   
84.
《中国化学快报》2023,34(6):107935
A facile and elegant method for synthesis of novel N–aryl phenothiazine derivatives from 2-phenylindolizines and phenothiazines through direct electrochemical oxidation has been developed. This approach was performed smoothly at room temperature without external oxidant and catalyst. Cyclic voltammetry and in situ FTIR techniques were applied to analyze the cross-coupling process of phenothiazines and 2-phenylindolizines, which helped to select the appropriate reaction potential. Under the optimized conditions, a broad range of substrates were well tolerated, affording the desired products in moderate to excellent isolated yields (up to 91%) with high regioselectivity. Meanwhile, a plausible mechanism involving a radical pathway has been proposed.  相似文献   
85.
《中国化学快报》2023,34(6):107939
The water promotion effects, where water can provide a solution-mediated reaction pathway in various heterogeneous chemical catalysis, have been presented and attracted wide attention recently, yet, the rational design of catalysts with a certain ability of enhancing water-induced reaction process is full of challenges and difficulties. Here, we show that by incorporating alkali (Na, K) cations as an electronic and/or structural promoter into Pd/rGO-ZnCr2O4 (rGO, reduced graphene oxide), the obtained Pd(Na)/rGO-ZnCr2O4 as a representative example demonstrates an outstanding benzyl alcohol oxidation activity in the Pickering emulsion system in comparison to the alkali-free counterpart. The response experiments of water injection confirm the enhanced activity, and the Na-modified catalyst can further enhance the promotion effects of water on the reaction. The effects of alkali cations for Pd nanoparticles are identified and deciphered by a series of experimental characterizations (XPS, in situ CO-DRIFTS, and CO-TPR coupled with MS), showing that there is abundant −OH on the surface of the catalyst, which is stabilized by the formation of Pd−OHx. The alkali-stabilized Pd−OHx is helpful to enhance the water-induced reaction process. According to the results of in situ Raman as well as UV-vis absorption spectra, the Na-modulated Pd(Na)/rGO-ZnCr2O4 enables the beneficial characteristics for distorting the benzyl alcohol structure and enhancing the adsorption of benzyl alcohol. Further, the mechanism for enhanced water promotion effects is rationally proposed. The strategy of alkali cations-modified catalysts can provide a new direction to effectively enhance the chemical reaction involving small molecule water.  相似文献   
86.
《中国化学快报》2023,34(7):108028
Organic radical as a powerful tool has been extensively applied in synthetic chemistry. However, harnessing radical-mediated noncovalent interactions to fabricate soft materials remains elusive. Here we report a new category of supramolecular hydrogel system held by multiple radical-radical (polyradical) interactions, and its photosensitive cross-linking structure. A simple polyacrylamide with triarylamine (TAA) pendants is designed as the precursor. The TAA units in polymer can be converted into active TAA⁺ radical cations with light and further associate each other via TAA⁺‒TAA⁺ stacking interactions to form stable supramolecular network. Temporal control of the light irradiation dictates the degree of radical stacks, thus regulating the mechanical performance of the resulting hydrogel materials on-demand. Moreover, the reversible collapse of this hydrogels can be promoted by adding radical scavenger or exerting reduction voltage.  相似文献   
87.
《中国化学快报》2023,34(9):108156-51
Hydrogen evolution from water electrolysis has become an important reaction for the green energy revolution. Traditional precious metals and their compounds are excellent catalysts for producing hydrogen; however, their high cost limits their large-scale practical application. Therefore, the development of affordable electrocatalysts to replace these precious metals is important. Transition metal phosphides(TMPs) have shown remarkable performance for hydrogen evolution and garnered considerable ...  相似文献   
88.
《中国化学快报》2023,34(12):108453
A cooperative Pd/Cu-catalyzed three-component cross-coupling reaction of alkynes, B2Pin2 and alkene-tethered aryl halides is reported. This reaction proceeds under mild conditions and shows broad substrate scope, providing a variety of heterocycles containing tetrasubstituted alkenylboronate moieties in synthetically useful yields with excellent chemoselectivity and regioselectivity. This transformation features the catalytic generation of β-borylalkenylcopper intermediates and their use in Pd-catalyzed Heck cyclization/cross-couplings. An enantioselective cascade cyclization/cross-coupling process has also been developed for the synthesis of enantiomerically enriched oxindole bearing a tetrasubstituted alkenylboronate moiety.  相似文献   
89.
Noble metal nanoparticles attract growing interest owing to their high surface-to-volume ratio and unique optical, electric and catalytic properties. Fine-tuning these properties and broadening potential applications can be envisaged if nanoparticles are coupled to supramolecular cages that afford a highly tailorable inner environment as well as rich endo-/exo-functionalization. Due to rich chemical/physical properties of cages, integration of multiple host-guest interactions in confined cavities through endo-molecular design has been achieved. Such cages provide ideal confined templates for size-controlled synthesis of ultrafine nanoparticles with superior catalytic activities. Moreover, exo-functionalization of cages offers huge opportunities to couple with nanoparticles, generating cage-nanoparticle hybrids or hierarchical assemblies that combine merits of both. The present review provides recent advances in cage-mediated nanoparticle systems with synergistic effects and integrated functions, and demonstrates their applications in catalysis, sensing, chiral amplification, plasmonic switches, imaging and cell therapy. Finally, we highlight key challenges and identify emerging directions in the coming years.  相似文献   
90.
Luminescent open-shell organic radicals have recently been regarded as one of the most potential materials in organic light-emitting diodes(OLEDs). Herein, we have synthesized two new organic radicals, namely tris{4-[4-(tert-butyl)phenoxy]-2,6- dichlorophenyl}methane radical(TTM-O) and tris(4-{[4-(tert-butyl)- phenyl]thio}-2,6-dichlorophenyl)methane radical(TTM-S), by the substitution of chalcogen atom elements at the para position of conventional tris(2,4,6-trichlorophenyl)methyl(TTM) radical moiety. Interestingly, both TTM-O and TTM-S exhibited significantly enhanced photostability compared with the unsubstituted TTM radical parent. Moreover, the chalcogen atom also had a crucial impact on the photoluminescence quantum yield(PLQY) of the radicals, i.e., the PLQY of TTM-S was greatly enhanced compared to TTM radical while TTM-O was nearly non-emissive. Particularly, TTM-S showed intense PLQY of 37.54% and 185-fold longer photostability than that in cyclohexane solution of TTM.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号